
A Question of Character: Rules to Play by

Ian Lane Davis, Technical Director

Activision, Inc.
3100 Ocean Park Blvd, Santa Monica, CA 90405

idavis@activision.com, akiam@alum.dartmouth.org

Abstract
Almost every type of computer game has some sort of AI
scripting language which enables level designers to script a
story arc for a mission or game level and to provide
personalities and individual responses to different characters
in a game. And whether the “characters” in a game are 3D
polygonal virtual actors the player explicitly interacts with
or virtual generals who direct massive armies but are never
themselves seen, the goal of the AI is to make the characters
come to life. Many scripting languages in games have some
serious problems in speed or ease of use. Thus, we created a
character management system we call the CCA (Character
Control Architecture) and an efficient and easy to use rules
system we call the IIIE (Ian’s Improved Inference Engine)
for an unshipped 3D action/adventure title, Planetfall 2: The
Other Side of Floyd. The system was designed for maximal
extensibility and flexibility, and currently we are using the
CCA & IIIE for controlling the mission scripting and tactical
ship AI for a 3D Real-Time Strategy game (RTS)

Introduction
Planetfall 2: The Other Side of Floyd was a 3D comical
Action/Adventure game focussed around a hapless space
traveler who had the misfortune to hook up with two
dysfunctional robots named Floyd and Oliver. The original
games that these characters came from (Planetfall and
Stationfall) were text -only games and the transition to a
real-time 3D graphical game created AI challenges such as
path planning in a 3D environment, inverse kinematics
systems for motion planning, and strategic AI for the
player’s foes. However, the biggest AI challenge was to
create the logic and interaction with Floyd & Oliver, AI
buddies who would be both part of the story and tools for
the player. These robots were to follow the player around
and perform a wide variety of tasks such as opening doors,
fetching items, delaying enemies, and causing havoc.
Towards this end, we created the CCA (Character Control
Architecture) and the IIIE (Ian’s Improved Inference
Engine).

Philosophy
Two principle elements involved in bringing the characters
to life are storytelling and emergent behaviors. Storytelling
is scripted glimpses at the characters’ personalities.
Emergent behaviors are actions or combinations of actions

performed by a character or characters that come from a
combination of the characters’ basic traits and abilities and
the potentially unpredictable opportunities and situations
that can arise. Storytelling gives the level designer control
over the basic perception of the characters by the player,
while emergent (or opportunistic) behavior allows the
player to feel that she is experiencing and influencing a
unique game experience. Balancing the storytelling and
emergent behaviors is the trick to making an immersive
game like Planetfall succeed in presenting believable and
distinct characters, and in making an RTS mission seem
both unique and responsive to a player’s strategies.

Overview
In our CCA, each character is treated as an independent
agent. Each character maintains a current plan of action,
state, and memory for itself, and when the situation
demands that a new decision be made, the character calls
the inference engine to determine a new course of action.

There are five principle elements: The CCA (Character
Control Architecture), the IIIE rules, the Action Scripts, the
Atomic Actions, and the Character Attributes. The CCA
and the Atomic Actions are general algorithms (coded in
C++) common to all characters, while the IIIE rules, Action
Scripts, and Character Attributes are specific to each
character and created with a designer-friendly grammar.

The behavior of a character is determined by the different
elements of the Behavior Pyramid shown below:

Figure 1. The Behavior Pyramid for a character. The CCA
and Atomic Actions are part of the executable, while the
rest is configurable by the level designer.

CCA

IE Rules for a
Character

Action Scripts

Atomic
Actions

Character
Attributes

• CCA: The Character Control Architecture controls how
a character manages its current plan(s) and when it
calls the Inference Engine to determine a new course of
action. The sophistication of the CCA is that it handles
interruptions of plans elegantly, monitors changes in
the character’s environment, and could allow the
resumption of interrupted plans. Every character in the
game is instantiated as a CCA entity, including a
“MISSION” entity that performs logic and actions for
the environment.

• IIIE Rules: Each character has its own set of rules that
fully define which actions it can initiate under any
given circumstances. This makes the search for a
specific character’s next plan/action efficient (since the
character’s rules are separate from those of other
characters), and it allows us to choose a new action for
a specific character on demand. The “left-hand sides”
of the rules are conditionals based on the Game &
Character Attributes. The “right-hand sides” are
tokens for specific Action Scripts. IIIE rules are loaded
and unloaded in sets (by file), and a given character
can have several different sets loaded at any given
time (such as local and global rules). Sets of rules are
defined either for a particular character or for a group
of characters, and each character may belong to as
many groups as the designer specifies (and the
character inherits all rules sets attached to those
groups).

• Action Scripts: Each action script is a description of
how a specific plan or action looks, sounds, and plays
out. It can contain motion instructions, sounds, &
animations. It can set or unset character attributes. It
specifies which Atomic Actions are part of a plan for
the CCA to execute. The plan consists of a series of
sequential steps, each of which can contain several
simultaneous atomic actions, and it can potentially
have steps that are dependent on the successful
execution of previous steps (the latter is not
implemented in the current version). As with IIIE rules,
Action Scripts (AS) are loaded and unloaded in sets
(by file), and several different sets can be loaded at any
given time (such as local and global actions). A
specific AS is referred to in the rules by a string
identifier, such as Launch_Starcruiser_Attack or
Hit_Lloyd. Action Scripts may be used by several
characters

• Character Attributes: Everything we need to know
about a character for the given environment. There are
two types of attributes: permanent and situational.
Permanent attributes are defined by the particular
game: they could include location, orientation, current
plan, etc. Situational attributes are defined by the
designer in the action script files. Examples might be
simple booleans like HAS_ID_CARD_IN_HAND.
They could also be integers or floating point, like

TIMES_FLOYD_HAS_HIT_ME or DIST_2_STAR.
The situational attributes are loaded along with the
Action Scripts and IIIE rules. The most interesting
attributes are “hot variables” which are described later
with the IIIE. Some attributes act as global variables
(such as a user defined variable OPEN_AIRLOCK),
and some have an instance attached to each character
(such as Floyd.HITPOINTS).

• Atomic Actions: The very fundamental building blocks
of the characters’ behaviors are the Atomic Actions.
These are just functions in the main game core that
handle basic motions, sounds, & other interactions
with the environment. Examples might be plan_motion
(to_vector), follow_character(whom_to_follow), or
attack_enemy(ship_number).

The Control Loop
A major part of the balance comes from designing the
control loop of the game so that each character gets a fair
chance to react to changes in the environment in a timely
manner. The control loop must act like a process scheduler
in an operating system. Each character needs to get its fair
share of processing time, the control loop must not waste
time on characters that don’t need processing, and the
whole thing has to happen efficiently. The model we are
using is the “round robin” model [Tanenbaum87], in which
there is a list of characters, and at each pass through the
control loop, each character is given a finite chunk of time
in which to perform some AI.

At the very highest level of control, the main loop of the
game looks like this:

Figure 2. The Main Loop of Planetfall 2

The three principle components are the Event Handler, the
Animation & Rendering Module, and the AI. The Event
Handler is responsible for all input from the character as
well as system events. The Animation & Rendering
Module keeps the screen fresh with the latest projection of
the game world. Finally, the AI determines and executes the
characters’ actions. In any given cycle of the game, each

Character
Data

AI

Event Handler Animation &
Rendering

module is allocated some amount of time (and,
correspondingly, some amount of CPU processing) to
perform its tasks. The data for each character is stored in
one central repository. All of the relevant information
about a character’s state, including position and joint
angles, is stored in a central, easy-to-access data structure.

There are two main components to the AI Loop: setting
plans for all characters and executing plans for all
characters. The main reason the planning and execution
are separate is so that each character works with the same
information (execution may change positions, joint angles,
or other attributes). Also, the disjunction between planning
and simulating allows us to update the simulation and
drawing more frequently than we need to plan. During
execution, if any character is in motion, it can check during
each frame whether or not it risks colliding with another
character; it also may need to update joint angles in each
frame.

Each character, gets an opportunity to set its own plan.
We can keep track of the amount of time that has passed
after each planning, and if after Ti we are out of our
allocated time, we exit, and then in the next frame we can
start the planning at Character i.

Figure 3. Set Plan Character i

If nothing important has changed (no “hot variables” set),
Set Plan Character i exits. Otherwise, we evaluate the
inference engine in order to see if we need a new plan. The
Inference Engine returns an action token, which points to
an action script. The action script is used to fill out the
Character plan data structure for the given Character (to be
described later).

Next, Execute Character i performs a round-robin loop.
Each Character is given some amount of time to perform its
tasks. In executing each Character’s plans, we look at all
active plans, and execute the next step of each of them (a
step consists of a number of atomic actions that must be
initiated simultaneously, such as a motion, a sound, some
low-level planning). In the current implementations, some
characters in the game have a limit of one script, but a
WORLD entity can have many concurrent scripts.

This system emphasizes an object-oriented design to the
characters. This gives us independent decis ion making for
the characters and easy modification to one character’s

behavior (without affecting others’), but it still allows us to
coordinate characters through the IIIE.

Figure 4. The Complete Flow of Game Control

Ian’s Improved Inference Engine
The IIIE (triple-I E) evaluates potentially complex rules
very quickly. The rules (at present) are straightforward
conditionals, and there is no implicit chaining of rules in a
single inference engine evaluation, although chaining can
be accomplished in multiple steps. See [Tanimoto87] &
[Charniak86] for general descriptions of Inference engines.
Principal features of the IIIE include:

• Compiled Rules. The rules compile into and execute as
dynamically loadable C++ code, improving the speed
of evaluation and allowing use of commercial
debugging tools.

• When-Needed Rule Evaluation. We use variables call
“hot variables”. During pre-compilation, each hot
variable is linked to all of the rules that depend on it.
During the execution of the game, if any hot variable’s
value is modified, it is marked as dirty. When the IIIE
evaluation happens for each character, only the rules
that reference dirty hot variables are evaluated.

• Arbitrarily Complex Logic. The Left-hand sides of the
rules can include arbitrarily complex arithmetic &
logical expressions

• Simple Grammar. The raw rules and scripts provided
by the designers are easy to read and write. This
example shows a rule that compares a “hot variable”
(SELECTED_OBJECT) to the ID of a red button, and
calls an action script that animates some special
effects:

Action
Scripts IN OUT IIIE

Evaluation

If we need to
call IIIE

IIIE not needed

Character

Character
Data

Event
Handler

Animation
&Rendering

AI
Set Plans Execute Plans

Character

Characte

IE.Evaluate

Action
Script

IIIE

Action

IIIE

Action

IIIE

Action Character

Character

Character
 Script
1

Script
1

Script
1

Script
1

Script
1

Script
1

RULE red_button_pushed

if (SELECTED_OBJECT is red_button_obj)

then
 explode

END_RULE

• Object Orientedness. Each character maintains its own
separate knowledge base (rules & scripts), but can also
share mission specific data

Figure 5. The IIIE Organization

All of the logic in the IIIE & CCA is generated from rule
files and action script files. These are written in a designer-
friendly grammar, and are preprocessed into C++ code that
is compiled into loadable libraries (Dynamic Link Libraries,
or DLLs). In these files, the user can define characters,
action scripts, variables, and rules (though characters can
also be generated in the game core). The rules are specific
to each character, while the action scripts can be accessed
by all of the characters.

The basic measurement of time is the cycle (also known as
the frame or loop). If, in a given cycle, none of the hot
variables have been changed (a dirty flag in each variable
signals a change), the CCA does nothing. Only when a
variable has been modified does the CCA put the relevent
rules on the Affected Rules List (ARL). At each cycle, the
CCA uses the ARL to modify the SRL (Satisfied Rules List)
for each character. The SRL consists of all of the rules
whose left-hand sides are currently true. Initially, the SRL
is empty, but any rule from the ARL whose left side
evaluates to true is added to the SRL (unless it is already
there). Furthermore, any rule from the ARL whose left-hand
side is now false can get removed from the SRL.

This guarantees that at each cycle we have a list of
satisfied rules to choose from which is complete and which

was generated efficiently. We choose (either at random or
through a priority ranking) a rule from the SRL as the
current rule to fire. Firing the rule means calling the right
hand side of the rule (an action script which has been
turned into C++ code). This entire process repeats for each
character under the control of the CCA.

Examples
In order to give a more complete understanding of this
system, we are including sample rules and scripts for one
small part of a level in Planetfall 2: The Other Side of Floyd
(as well as showing a sample debugging trace of the rules).
In this setting, the player is locked into a cabin aboard a
spaceship, and Floyd and Oliver need to help extricate him.
The rules show how the IIIE lets Floyd be used for both
storytelling and as part of the player’s arsenal of tools.
Note that for space considerations, we can only show some
of Floyd’s rules and scripts. Furthermore, we cannot
explain in detail what each atomic action means, though
most involve moving the characters or playing sounds.
Two of Floyd’s rules shown here are responses to
commands given by the player, and two are rules Floyd
follows when not being bothered.

Sample Rules
Here are a few sample rules for Floyd. They handle his
autonomous actions, as well as being selected by the
player to report in or open a door.

// Rules for Floyd for the IIIE Inference Engine & CCA
// for use with the demo scenario "Paxton's Room".
RULES FOR FLOYD

//
// IDLE_MOTIONS
//
RULE idle_motions
if ((FLOYD.STATE is IDLE) and (next_floyd_idle is WALK))
then
 floyd_pause
or
 floyd_wander
END_RULE

//
// IDLE_GAGS
//
RULE idle_gags
if ((FLOYD.STATE is IDLE) and (next_floyd_idle is TALK))
then
 floyd_generic_sound(how_long_sound)
or
 floyd_generic_sound(floyd_ID_sound)
END_RULE

Hot Variables

Dirty
Variables

Character N

Inference Engine

Satisfied
Rules

Rules

Affected
Rules

//
// REPORT_IN
//
RULE report_in
if (SELECTED_OBJECT is floyd_obj)
then
 floyd_here
END_RULE

//
// OPEN_DOOR
//
RULE open_door
if ((SELECTED_OBJECT is RIGHT_DOOR) and
(gCharacterIcon is FLOYD_ICON))
then
 floyd_open_door
END_RULE

Sample Scripts
The corresponding Action Scripts follow (with many game-
specific atomic actions). “Actions” are what are invoked
by the rules firing. Within each action we can define
scripts for any number of characters, although here we only
show scripts for Floyd. Also note that within each script,
several steps can be defined, and all atomic actions in one
step have to be completed before the next step of the script
will be executed. Most of the atomic actions – all lines
between “SCRIPT FLOYD” and “STEP” or between “STEP”
and “END_SCRIPT” -- get translated directly into C++ code
(hence the syntax and commenting style) that’s imbedded
in the script’s.

//
// floyd_open_door
//
// Move Floyd to the door. Then open it!
ACTION floyd_open_door
 SCRIPT FLOYD
 FLOYD.STATE = BUSY;
 // By initiating an action, the request is satified
 FLOYD.PLAYER_REQUEST = NO_REQUEST;
 SELECTED_OBJECT = NONE_SELECTED;
 SetCursor(13);
 SetAnim(FLOYD,1,4,0);
 TurnToObj(FLOYD, A_HOTSPOT, 1);
 MoveToHotSpot(FLOYD, 1,4, right_door_spot,7.2,1);
 STEP
 SetCursor(0);
 SetAnim(FLOYD,1,5,0);
 SoundPlay(FLOYD, floyd_grunt,CYCLE_ONCE,

WAIT_FOR_SOUND_TO_FINISH);
 FLOYD_TUGGING_ON_DOOR = TRUE;
 END_SCRIPT
END_ACTION

//
// floyd_here
//
// Floyd’s been clicked on, so say hi to player
ACTION floyd_here
 SCRIPT FLOYD
 SELECTED_OBJECT = NONE_SELECTED;
 FLOYD.STATE = BUSY;

SetAnim(FLOYD,1,10,1);
 TurnToObj(FLOYD, THE_CAMERA, 0);
 SoundPlay(FLOYD,floyd_here_sound,CYCLE_ONCE,

WAIT_FOR_SOUND_TO_FINISH);
 STEP
 FLOYD.STATE = IDLE;
 END_SCRIPT
END_ACTION

//
// floyd: floyd_pause
//
// Floyd is bored. Just shrug shoulders
ACTION floyd_pause
 SCRIPT FLOYD
 FLOYD.STATE = BUSY;
 SetAnim(FLOYD,1,3,1);
 STEP
 FLOYD.STATE = IDLE;
 END_SCRIPT
END_ACTION

//
// FLOYD: floyd_wander
//
// Choose some random spot and walk over.
// Let’s set it up so we make a snide comment when we get there.
ACTION floyd_wander
 SCRIPT FLOYD
 int target;
 target = RAND_INT(6,9);
 FLOYD.STATE = BUSY;
 SetAnim(FLOYD,1,4,0);
 TurnToObj(FLOYD, A_HOTSPOT, target);
 DEBUG_MSG(debug_file, "\nTARGET: %d\n", target);
 MoveToHotSpot(FLOYD, 1,4,target,7.2,1);
 STEP
 next_floyd_idle = TALK;
 FLOYD.STATE = IDLE;
 END_SCRIPT
END_ACTION

//
// FLOYD: floyd_generic_sound
//
// Just make a rambling Floyd comment.
ACTION floyd_generic_sound(int which_sound)
 SCRIPT FLOYD

 FLOYD.STATE = BUSY;
 SetAnim(FLOYD,1,6,1);
 TurnToObj(FLOYD, THE_CAMERA, 0);
 SoundPlay(FLOYD, which_sound,CYCLE_ONCE,

WAIT_FOR_SOUND_TO_FINISH);
 STEP
 next_floyd_idle = WALK;
 FLOYD.STATE = IDLE;
 END_SCRIPT
END_ACTION

Sample debugging trace:
A partial debugging trace of a 3 minute run through this
room (edited for brevity and just to show Floyd’s rules) is
shown here. At the first IIIE run for Floyd, he’s told to
open the door for the room. In the second run, he’s
finished his actions and is restored to a waiting state. In
the third, he gets bored and wanders off.

DIRTY VAR: SELECTED_OBJECT: 52

Running IIIE for FLOYD

of Affected rules: 2
 Affected Rule: open_door
 Affected Rule: report_in
of Satisfied rules: 1
 Satisfied Rule: open_door
RULE CHOSEN: open_door

 ACTION: floyd_open_door

DIRTY VAR: SELECTED_OBJECT: -1
DIRTY VAR: FLOYD.PLAYER_REQUEST: 0
DIRTY VAR: FLOYD.STATE: 1

Running IIIE for FLOYD

of Affected rules: 4
 Affected Rule: open_door
 Affected Rule: report_in
 Affected Rule: idle_gags
 Affected Rule: idle_motions
of Satisfied rules: 0

DIRTY VAR: FLOYD.STATE: 0

Running IIIE for FLOYD

of Affected rules: 2
 Affected Rule: idle_gags
 Affected Rule: idle_motions

of Satisfied rules: 1
 Satisfied Rule: idle_motions
RULE CHOSEN: idle_motions

 ACTION: floyd_wander

Conclusions
In designing our system, we had a few goals for it: it had to
be fast, flexible, easy to debug, and relatively easy to write
rules for. We seem to have achieved much of this:

The IIIE & CCA allow us to attach just the needed set of
rules to each character and to evaluate exactly and only the
ones we need. Because the rules are compiled, even on a
133 mHz machine we can evaluate over 25000 rules per
second (with test sets that required all rules to be evaluated
at all times). However, because of the “hot variables” and
when-needed rule evaluation, we rarely needed to evaluate
more than a few dozen per second. For Planetfall 2: The
Other Side of Floyd, we anticipated needing 20-30 rules
loaded concurrently for non-central characters, and 30-100
rules for central characters. In our current 3D RTS game,
we have up to 100 rules per team for high-level decision-
making, and anticipate 5-20 rules per ship (with up to 40
ships total) for tactical decisions. The core system is
virtually unchanged for our RTS game, which demonstrates
the flexibility of the system. Additionally, the relatively
straightforward grammar (strangest only when it’s most like
C and C++) has allowed non-programmers to learn the
system rapidly. Finally, our compiled rules allow
debugging using commercial tools such as symbolic
debuggers.

It is worth noting that there are still many difficulties in rule
design for any expert system. The designers must be
carefully trained to watch out for conflicting rules,
oscillating rule firings, and efficiency issues. With the
combination of using the source level debuggers for the
pre-processed rules and scripts that have been turned into
C++ code, and watching rule evaluation traces, we have
managed to have designers with only rudimentary
programming training create complex missions and
behaviors. We anticipate making several additions in the
near future to help with rule design, including the ability to
define mutually exclusive subsets of rules (such as “Floyd
Speaking Rules” or “Space Destroyer Targeting Rules”)
and rule priorities which will be used to decide between
rules in mutually exclusive sets.

For now, the CCA and IIIE system has proven itself to be
fast, easy to use, and flexible enough for both a 3D action
game and a Real-Time strategy game. We hope to apply
the system to many more upcoming games.

Acknowledgements
The author would like to thank Martin Martin, Brian
Hawkins, Linus Chen, and Ken Miller for their contributions
to the CCA and IIIE, Ryan Kirk, Eric Gewirtz, and Mike
Ward for their rule scripting, and Scott Lahman, VP of
Production for supporting advanced AI work at Activision
and for encouraging publication.

References
[Charniak86] E. Charniak and D. McDermott, An
Introduction to Artificial Intelligence, Addison-Wesley,
1986.

[Tanenbaum87] A. Tanenbaum, Operating systems:
Design and Implementation, Prentice Hall Press, 1987.

[Tanimoto87] S. Tanimoto, The Elements of Artificial
Intelligence, Computer Science Press, Rockville, Maryland,
1987.

